Functional stoichiometry of Shaker potassium channel inactivation.

نویسندگان

  • R MacKinnon
  • R W Aldrich
  • A W Lee
چکیده

Shaker potassium channels from Drosophila are composed of four identical subunits. The contribution of a single subunit to the inactivation gating transition was investigated. Channels carrying a specific mutation in a single subunit can be labeled in a heterogeneous population and studied quantitatively with scorpion toxin sensitivity as a selection tag. Linkage within a single subunit of a mutation that removes the inactivation gate to a second mutation that affects scorpion toxin sensitivity demonstrates that only a single gate is necessary to produce inactivation. The inactivation rate constant for channels with a single gate was one-fourth that of channels with four gates. In contrast, the rate of recovery from inactivation was independent of the number of gates. It appears that each of the four open inactivation gates in a Shaker potassium channel is independent, but only one of the four gates closes in a mutually exclusive manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct functional stoichiometry of potassium channel beta subunits.

Shaker-type potassium channels play important roles in determining the electrical excitability of cells. The native channel complex is thought to be formed by four pore-forming alpha subunits that provide four interaction sites for auxiliary modulatory Kvbeta subunits. Because Kvbeta subunits possess diverse modulatory activities including either up-regulation or down-regulation of potassium cu...

متن کامل

Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins.

Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important ...

متن کامل

Atomic mutagenesis in ion channels with engineered stoichiometry

C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue ...

متن کامل

Biophysical and molecular mechanisms of Shaker potassium channel inactivation.

The potassium channels encoded by the Drosophila Shaker gene activate and inactivate rapidly when the membrane potential becomes more positive. Site-directed mutagenesis and single-channel patch-clamp recording were used to explore the molecular transitions that underlie inactivation in Shaker potassium channels expressed in Xenopus oocytes. A region near the amino terminus with an important ro...

متن کامل

Multiple Shaker potassium channels in a primitive metazoan.

Voltage-gated potassium channels are critical elements in providing functional diversity in nervous systems. The diversity of voltage-gated K+ channels in modern triploblastic metazoans (such as mollusks, arthropods and vertebrates) is provided primarily by four gene subfamilies (Shaker, Shal, Shab, and Shaw), but there has been no data from the ancient diploblastic metazoans until now. Diplobl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 262 5134  شماره 

صفحات  -

تاریخ انتشار 1993